Stochastic Navigation of Unmanned Aerial Vehicles (UAVs) for Border Patrolling: A Response Surface Methodology Approach

40th International Symposium on Military Operational Research (40 ISMOR)

Busra Biskin \& Joerg Fliege \& Toni Martinez Sykora

Department of Mathematical Sciences Operational Research Group

I. Introduction: UAVs in Border Patrolling

The predominant strategy for border patrol operations is deploying human resources and manned ground vehicles.

However, this approach is frequently costly, occasionally ineffective, and can even pose risks to the individuals involved.

ukdj.

EU and UK are already employing UAVs for border patrol purposes.
"monitor and protect physical crossings of people and goods into and out of the UK's territory" ${ }^{\prime \prime}$

2. Problem

the draft '2025 UK Border Strategy' '

- Detect and reduce threats as far as possible before they reach the border to ensure effective interventions and enforcement of controls at the right point in the journey
- The border will be "highly digitised and automated"

2. Problem

the draft '2025 UK Border Strategy' '

- Detect and reduce threats as far asmossible before they reach the border to ensure effective interventions and enforce controls at the right point in the journey
- The border will be "highly digitised noratomated"

2. Problem

the draft '2025 UK Border Strategy' '

- Detect and reduce threats as far asmossible before they reach the border to ensure effective interventions and enforce no controls at the right point in the journey
- The border will be "highly digitised nuaytomated"

\rightarrow The threats try to pass through the border in both ways in sequential order with a stochastic pattern to avoid getting detected. If they followed a deterministic pattern, UAVs would easily learn it and detect each and every threat.

2. Problem

the draft '2025 UK Border Strategy' '

- Detect and reduce threats as far asmossible before they reach the border to ensure effective interventions and enforce (oo controls at the right point in the journey
- The border will be "highly digitised noratomated"

\rightarrow The threats try to pass through the border in both ways in sequential order with a stochastic pattern to avoid getting detected. If they followed a deterministic pattern, UAVs would easily learn it and detect each and every threat.

\rightarrow Likewise for UAVs, if they follow a deterministic search pattern in the area, intruders would learn it and never get caught.

2. Problem

the draft '2025 UK Border Strategy' '

- Detect and reduce threats as far asmossible before they reach the border to ensure effective interventions and enforce reo controls at the right point in the journey
- The border will be "highly digitised naratomated"

\rightarrow The threats try to pass through the border in both ways in sequential order with a stochastic pattern to avoid getting detected. If they followed a deterministic pattern, UAVs would easily learn it and detect each and every threat.

\rightarrow Likewise for UAVs, if they follow a deterministic search pattern in the area, intruders would learn it and never get caught.

Our aim

Finding a stochastic strategy for the UAV to detect the threats under uncertainty before they reach the border

3. Modelling the Problem: Creating the Environment

Assumptions

- UAV moves on a two-dimensional lattice graph which can be defined as a $P_{m} \times P_{1}$ in the graph Cartesian product as paths with m and l edges (and hence $m+l$ and $l+l$ vertices), respectively.
- UAVs can only make 90° movements through four directions with probability distribution $\mathbf{P}=\left[\mathbf{P}_{\mathbf{W}} \boldsymbol{P}_{\mathrm{E}}, \boldsymbol{P}_{\mathbf{S}}, \boldsymbol{P}_{\mathbf{N}}\right]$.
- UAVs move stepwise and can only make one step in a time step.
- UAVs can only make a limited number of moves, denoted by L. It is the distance limit on UAVs.
- UAV's detection range is accepted as a radius R projected onto the mission area. If the targets fall within this range can be detected by the UAV.

3. Modelling the Problem: Objective \& Model

Objective is to identify the probabilities in such a way we maximise the chance to detect the threat
stochasticity from UAV \& threat movement

simulation optimisation problem

S number of simulations
noise, ε
u^{t} : location of the UAV, $\left(u_{1}, u_{2}\right)$, at time step $t, u_{1} \in[0, m+1], u_{2} \in[0, l+1], 0 \leq t \leq L$
v^{t} : location of the target, $\left(v_{1}, v_{2}\right)$, at time step $t, v_{1} \in[0, m], v_{2} \in[0, l], 0 \leq t \leq L$

UAV moves with a function $F(P, \varepsilon)$

$$
T=\left\{\begin{array}{ll}
\mathrm{t}, & \text { if }\left\|\mathrm{u}^{t}, v^{t}\right\|<R, \quad 0<\mathrm{t} \leq L \\
M, & \text { otherwise }
\end{array} \quad D_{k}= \begin{cases}1, & \text { if } 0<t \leq L \\
0, & \text { if } t=M\end{cases}\right.
$$

maximise $\quad \frac{1}{S} \sum_{k=1}^{S} D_{k}$

3. Modelling the Problem: Objective \& Model

Objective is to identify the probabilities in such a way we maximise the chance to detect the threat
stochasticity from UAV \& threat movement

simulation optimisation problem

S number of simulations
noise, ε
u^{t} : location of the UAV, $\left(u_{1}, u_{2}\right)$, at time step $t, u_{1} \in[0, m+1], u_{2} \in[0, l+1], 0 \leq t \leq L$
v^{t} : location of the target, $\left(v_{1}, v_{2}\right)$, at time step $t, v_{1} \in[0, m], v_{2} \in[0, l], 0 \leq t \leq L$

UAV moves with a function $F(P, \varepsilon)$

$$
\begin{gathered}
T=\left\{\begin{array}{ll}
\mathrm{t}, & \text { if }\left\|\mathrm{u}^{t}, v^{t}\right\|<R, \quad 0<\mathrm{t} \leq L \\
M, & \text { otherwise }
\end{array} \quad D_{k}= \begin{cases}1, & \text { if } 0<t \leq L \\
0, & \text { if } t=M\end{cases} \right. \\
\text { maximise } \frac{1}{S} \sum_{k=1}^{S} D_{k}
\end{gathered}
$$

4. Methodology: Simulation Approximation Approach

4. Methodology: Optimisation of probability set, P

- Simulated Annealing Algorithm
- Stochastic Nelder-Mead Method
- Response Surface Methodology with Radial Basis Function

4. Methodology: Optimisation of probability set, P

- Simulated Annealing Algorithm X
- Stochastic Nelder-Mead Method \square
- Response Surface Methodology with Radial Basis Function

4. Methodology: Optimisation of probability set, P

- Simulated Annealing Algorithm \square worse execution time worse results
- Stochastic Nelder-Mead Methodworse execution time similar results
- Response Surface Methodology with Radial Basis Function

4. Methodology: Optimisation of probability set, P

- Simulated Annealing Algorithm worse execution time worse results
- Stochastic Nelder-Mead Method \square worse execution time similar results
- Response Surface Methodology with Radial Basis Function

A viable method for a complex system entails a response $y=F(x)$ that relies on the parametric design variables $x=\left[x_{1}, \ldots, x_{n}\right]^{\top}$, which in our context refer to $P=\left[P_{W}, P_{E}, P_{s}, P_{N}\right]$. An appropriate estimation of the function $F(x), F(P)$ in our case, will be formulated, given that the function itself is assumed to be unknown and complicated.

4. Methodology: Radial Basis Function

Radial basis functions have the form

$$
\begin{equation*}
F(\mathbf{x})=\sum_{i=1}^{m} \beta_{i} \phi\left(r_{i}, c\right), \tag{1}
\end{equation*}
$$

where $r_{i}(\mathbf{x})=\left\|\mathbf{x}-\mathbf{x}_{i}\right\|$ is the distance of the point \mathbf{x} from the i th data point \mathbf{x}_{i} in the parameter space, $\|\cdot\|$ denotes the Euclidean norm, $\phi(\cdot)$ is a suitably chosen radial basis function, c is a user-defined constant which is usually required to be non-negative, and β_{i} is the radial basis coefficient corresponding to the i th data point.

5. Numerical Examples

Number of UAVs	$\mathrm{I}-2$	
Number of decision stages to change P	$\mathrm{I}-2$	
Mission area	University of Southampton Highfield Campus	
	length	width
	610 m	560 m
How much faster UAVs then threats?	10 times	
d	10 m	
R	20 m	
Number of paths that threat can choose	differs (I-3-6)	
number of starting solutions	20	

5. Numerical Examples

Scenario I	Scenario 2	Scenario 3	Scenario 4
I UAV moves with a set of probabilities decided at the beginning of the mission.	I UAV makes n moves with a probability set decided at the beginning of the mission and uses another set of probabilities after n moves for (L-n) moves.	2 UAVs move with a set of probabilities decided at the beginning of the mission. The mission is accepted as successful if one of them detects the target.	2 UAVs, similar to Scenario 3, except they start from 2 different corners: South-West and North-East
$\begin{aligned} & {\left[\mathrm{PW}_{\mathrm{W}}, \mathrm{Pe}_{\mathrm{E}}, \mathrm{Ps}_{\mathrm{S}}, \mathrm{PN}_{\mathrm{N}}\right.} \\ &] \end{aligned}$	[PWI, $\mathrm{P}_{\mathrm{EI}}, \mathrm{P}_{\mathrm{SI}}, \mathrm{P}_{\mathrm{NI}}$, $\mathrm{P}_{\mathrm{W} 2}, \mathrm{P}_{\mathrm{E} 2}, \mathrm{P}_{\mathrm{S} 2}, \mathrm{P}_{\mathrm{N} 2}$]	$\begin{aligned} & {\left[P_{W I}, P_{\mathrm{EI}}, P_{\mathrm{s} I}, P_{N I},\right.} \\ & \mathrm{PW}_{\mathrm{W} 2}, \mathrm{P}_{\mathrm{E} 2}, \text {, } \mathrm{P}_{\mathrm{S} 2} \text {, } \mathrm{P}_{\mathrm{N} 2} \text {] } \end{aligned}$	$\begin{aligned} & {\left[P_{W 1}, P_{E 1}, P_{S I}, P_{N I},\right.} \\ & \left.P_{W 2}, P_{E 2}, P_{S 2}, P_{N} 2\right] \end{aligned}$
I decision stage	2 decision stages	I decision stage	I decision stage
I UAV	I UAV	2 UAVs	2 UAVs
4 decision variables	8 decision variables	8 decision variables	8 decision variables

+ with ground sensor

5. Numerical Examples

Scenario I	Scenario 2	Scenario 3	Scenario 4
I UAV moves with a set of probabilities decided at the beginning of the mission.	I UAV makes n moves with a probability set decided at the beginning of the mission and uses another set of probabilities after n moves for (L-n) moves.	2 UAVs move with a set of probabilities decided at the beginning of the mission. The mission is accepted as successful if one of them detects the target.	2 UAVs, similar to Scenario 3, except they start from 2 different corners: South-West and North-East
$\begin{aligned} & {\left[\mathrm{PW}_{\mathrm{W}}, \mathrm{Pe}_{\mathrm{E}}, \mathrm{Ps}_{\mathrm{S}}, \mathrm{PN}_{\mathrm{N}}\right.} \\ &] \end{aligned}$	[PWI, $\mathrm{P}_{\mathrm{EI}}, \mathrm{P}_{\mathrm{SI}}, \mathrm{P}_{\mathrm{NI}}$, $\mathrm{P}_{\mathrm{W} 2}, \mathrm{P}_{\mathrm{E} 2}, \mathrm{P}_{\mathrm{S} 2}, \mathrm{P}_{\mathrm{N} 2}$]	$\begin{aligned} & {\left[P_{W I}, P_{\mathrm{EI}}, P_{\mathrm{s} I}, P_{N I},\right.} \\ & \mathrm{PW}_{\mathrm{W} 2}, \mathrm{P}_{\mathrm{E} 2}, \text {, } \mathrm{P}_{\mathrm{S} 2} \text {, } \mathrm{P}_{\mathrm{N} 2} \text {] } \end{aligned}$	$\begin{aligned} & {\left[P_{W 1}, P_{E 1}, P_{S I}, P_{N I},\right.} \\ & \left.P_{W 2}, P_{E 2}, P_{S 2}, P_{N} 2\right] \end{aligned}$
I decision stage	2 decision stages	I decision stage	I decision stage
I UAV	I UAV	2 UAVs	2 UAVs
4 decision variables	8 decision variables	8 decision variables	8 decision variables

+ with ground sensor

5. Numerical Examples

6. Results

Scenario	best solution (W, E, S, N)	PoS	$\mathrm{E}[\mathrm{T}]$	standard deviation	execution time (sec)
I) I decision stage I UAV 4 dv	[0.114, 0.252, $0.25 \mathrm{I}, 0.383]$	0.231	212.94	36.42	167.99
I) + sensor	[0.676, 0.00I, 0.00I, 0.322]	0.414	88.38	1.59	117.05
2) 2 decision stages I UAV 8 dv	$\begin{aligned} & {[0.299,0.201,0.042,0.458]} \\ & {[0.134,0.632,0.056,0.178]} \end{aligned}$	0.283	122.13	10.85	I73.81
2) + sensor	$\begin{aligned} & {[0.001,0.698,0.001,0.300]} \\ & {[0.659,0.001,0.001,0.339]} \end{aligned}$	0.422	66.73	1.39	126.52
3) I decision stage 2 UAVs, same corner 8 dv	$\begin{aligned} & {[0.199,0.594,0.001,0.206]} \\ & {[0.001,0.603,0.001,0.395]} \end{aligned}$	0.457	82.16	19.67	304.94
3) + sensor	$\begin{aligned} & {[0.030,0.629,0.00 \mathrm{I}, 0.340]} \\ & {[0.708,0.00 \mathrm{I}, 0.00 \mathrm{I}, 0.290]} \end{aligned}$	0.705	85.1	5.42	178.35
4) I decision stage 2 UAVs, different corners 8 decision variables	$\begin{aligned} & {[0.001,0.001,0.791,0.207]} \\ & {[0.201,0.001,0.797,0.001]} \end{aligned}$	0.506	43.2	1.28	276.12
4) + sensor	$\begin{aligned} & {[0.010,0.454,0.135,0.401]} \\ & {[0.697,0.001,0.001,0.301]} \end{aligned}$	0.685	76.17	8.45	208.6

6. Results

Scenario	best solution (W, E, S, N)	PoS	E[T]	standard deviation	execution time (sec)
I) I decision stage I UAV 4 dv	[0.114, 0.252, 0.25I, 0.383]	0.231	212.94	36.42	167.99
I) + sensor	[0.676, $0.001,0.001,0.322]$	0.414^{2}	88.38	1.59	117.05
2) 2 decision stages I UAV 8 dv	$\begin{aligned} & {[0.299,0.201,0.042,0.458]} \\ & {[0.134,0.632,0.056,0.178]} \\ & \hline \end{aligned}$	0.283	122.13	10.85	173.81
information effect (sensor)		0.422	66.73	1.39	126.52
		$\begin{aligned} & 0.457 \\ & 0.705 \end{aligned}$	82.16	19.67	304.94
3) + sensor	$\begin{aligned} & {[0.030,0.629,0.001,0.340]} \\ & {[0.708,0.001,0.001,0.290]} \end{aligned}$		85.1	5.42	178.35
4) I decision stage 2 UAVs, different corners 8 decision variables	$\begin{aligned} & {[0.001,0.001,0.791,0.207]} \\ & {[0.201,0.001,0.797,0.00 \mathrm{I}]} \end{aligned}$	0.506	43.2	1.28	276.12
4) + sensor	$\begin{aligned} & {[0.010,0.454,0.135,0.40 I]} \\ & {[0.697,0.001,0.001,0.30 I]} \end{aligned}$	0.685^{2}		8.45	208.6

6. Results

Heatmaps of frequency of UAV visits over the simulation in the mission area

I decision stage
I UAV
4 dv

2 decision stages I UAV 8 dv

6. Experiment: random walk for the target

7. Challenges

- NOISE

- Execution Time
more decision stages/ \rightarrow more decision variables \rightarrow increased execution time more UAVs

Ex.

40th ISMOR, July 2023, Busra Biskin

9. Further Study

- Decreasing the noise
- More decision stages for UAVs
- Communication of UAVs
- Application of the model in different operations: monitoring wildlife, disaster relief operations, search and rescue operations

Thanks!

Happy to answer any questions!
b.biskin@soton.ac.uk

References

I Peter Burt and Jo Frew: ‘Crossing A Line |The use of drones to control border’. Drone Wars UK, December 2020. https://dronewars.net/wp-content/uploads/2020/I2/DW-Crossing-a-Line-WEB.pdf

How UAV moves in the border?

Mathematical Model

$$
\begin{gathered}
T= \begin{cases}\mathrm{t}, & \text { if }\left\|\mathbf{u}^{t}, v^{t}\right\|<R, \quad 0<\mathrm{t} \leq L \\
M, & \text { otherwise }\end{cases} \\
\text { minimise } E[T] \simeq \frac{1}{S} \sum_{k=1}^{S} Y\left(P, \xi_{k}\right)
\end{gathered}
$$

s.t.

$$
\begin{aligned}
& \sum_{i} p_{i}=1 \quad i \in W, E, S, N \\
& 0<p_{i}<1 \quad i \in W, E, S, N
\end{aligned}
$$

Steps of RBF

1. A particular basis function $\phi(r, c)$ is chosen. In this paper we will be using functions from the five classes in (14). Within each class, a particular member is determined by the value assigned to the constant c.
2. The data points are scaled so each component of \mathbf{x} is in the range $-1 \leqslant x_{i} \leqslant 1$.
3. An $m \times m$ symmetric matrix $\mathbf{R}=\left[r_{i j}\right]$ is constructed, where m is the number of data points. Each entry $r_{i j}$ of this matrix is the Euclidean distance between data points \mathbf{x}_{i} and \mathbf{x}_{j}.
4. The chosen basis function $\phi(r, c)$ is applied component-wise to the matrix \mathbf{R}, creating the matrix \mathbf{A}.
5. The matrix equation $\mathbf{A} \boldsymbol{\beta}=\mathbf{F}$ is solved, where each component F_{i} of the vector $\mathbf{F}=\left[F_{1}, \ldots, F_{m}\right]^{\top}$ is the objective function value at the corresponding data point \mathbf{x}_{i}. The resulting vector $\boldsymbol{\beta}=\left[\beta_{1}, \ldots, \beta_{m}\right]^{\top}$ is the vector of radial basis coefficients.
6. The model function value $f(\mathbf{x})$ at an arbitrary point \mathbf{x} within the parameter space is found in the following manner. A vector $\mathbf{g}(\mathbf{x})=\left[g_{1}, \ldots, g_{m}\right]^{\top}$ is constructed whose components g_{i} are obtained by the formula $g_{i}=\phi\left(r_{i}(\mathbf{x}), c\right)$, where $r_{i}(\mathbf{x})$ is the distance between \mathbf{x} and the i th data point \mathbf{x}_{i}. Then

$$
\begin{equation*}
f(\mathbf{x})=\boldsymbol{\beta}^{\top} \mathbf{g}(\mathbf{x})=\sum_{i=1}^{m}\left\{\beta_{i} g_{i}\right\} . \tag{15}
\end{equation*}
$$

Additional Graphs

0.8		350		
0.7		300		
0.6		$\text { 氙 } 250$		
0.5	\longrightarrow－scenario I	® 200		
00.4	－scenario 2	．든 150		\ldots scenario 2
0.3	－scenario 3	こ⿹⿺⿻⿻一㇂㇒丶⿱一口犬灬100		\longrightarrow scenario 4
0.2	－scenario 4	$\stackrel{\text { ® }}{ } 50$		
0.1		0		
0			w／o info	

