

Stochastic Navigation of Unmanned Aerial Vehicles (UAVs) for Border Patrolling: A Response Surface Methodology Approach

40th International Symposium on Military Operational Research (40 ISMOR)

Busra Biskin & Joerg Fliege & Toni Martinez Sykora

Department of Mathematical Sciences Operational Research Group CORMSIS

I. Introduction: UAVs in Border Patrolling

The predominant strategy for border patrol operations is deploying **human** resources and **manned** ground vehicles.

However, this approach is frequently costly, occasionally ineffective, and can even pose **risks** to the individuals involved.

A better approach : using **UAVs**

ukdj.

EU and UK are already employing UAVs for border patrol purposes.

"monitor and protect physical crossings of people and goods into and out of the UK's territory"¹

the draft '2025 UK Border Strategy'

- Detect and reduce threats <u>as far as possible before they reach the border</u> to ensure effective interventions and enforcement of controls at the right point in the journey
- The border will be "highly digitised and **automated**"

the draft '2025 UK Border Strategy'

- Detect and reduce threats <u>as far as possible before they reach the border</u> to ensure effective interventions and enforcement of controls at the right point in the journey
- The border will be "highly digitised and automated"

the draft '2025 UK Border Strategy'

- Detect and reduce threats <u>as far as possible before they reach the border</u> to ensure effective interventions and enforcement of controls at the right point in the journey
- The border will be "highly digitised and avtomated"

 \rightarrow The threats try to pass through the border in both ways in sequential order with a stochastic pattern to avoid getting detected. If they followed a deterministic pattern, UAVs would easily learn it and detect each and every threat.

the draft '2025 UK Border Strategy'

- Detect and reduce threats <u>as far as possible before they reach the border</u> to ensure effective interventions and enforcement of controls at the right point in the journey
- The border will be "highly digitised and avtomated"

 \rightarrow The threats try to pass through the border in both ways in sequential order with a stochastic pattern to avoid getting detected. If they followed a deterministic pattern, UAVs would easily learn it and detect each and every threat.

 \rightarrow Likewise for UAVs, if they follow a deterministic search pattern in the area, intruders would learn it and never get caught.

the draft '2025 UK Border Strategy'

- Detect and reduce threats <u>as far as possible before they reach the border</u> to ensure effective interventions and enforcement of controls at the right point in the journey
- The border will be "highly digitised and aytomated"

buffer area before the border

 \rightarrow The threats try to pass through the border in both ways in sequential order with a stochastic pattern to avoid getting detected. If they followed a deterministic pattern, UAVs would easily learn it and detect each and every threat.

 \rightarrow Likewise for UAVs, if they follow a deterministic search pattern in the area, intruders would learn it and never get caught.

Our aim

Finding a **stochastic strategy** for the UAV to detect the threats under uncertainty **before** they reach the border

3. Modelling the Problem: Creating the Environment

Assumptions

- UAV moves on a two-dimensional lattice graph which can be defined as a $P_m \times P_l$ in the graph Cartesian product as paths with m and l edges (and hence m+l and l+l vertices), respectively.
- UAVs can only make 90° movements through four directions with probability distribution $P=[p_w, p_E, p_S, p_N]$.
- UAVs move stepwise and can only make one step in a time step.
- UAVs can only make a limited number of moves, denoted by *L*. It is the distance limit on UAVs.
- UAV's detection range is accepted as a radius R projected onto the mission area. If the targets fall within this range can be detected by the UAV.

3. Modelling the Problem: Objective & Model

Objective is to **identify the probabilities** in such a way we **maximise** the **chance** to detect the threat

 v^t : location of the target, (v_1, v_2) , at time step $t, v_1 \in [0, m], v_2 \in [0, l], 0 \le t \le L$

UAV moves with a function $F(P, \varepsilon)$

 $\frac{1}{S}\sum_{k=1}^{S}D_k$

$$T = \begin{cases} \mathsf{t}, & \text{if } \|\mathsf{u}^t, v^t\| < R, \quad 0 < \mathsf{t} \le L \\ M, & \text{otherwise} \end{cases} \qquad D_k = \begin{cases} 1, & \text{if } 0 < t \le L \\ 0, & \text{if } t = M \end{cases}$$

maximise

40th ISMOR, July 2023, Busra Biskin

3. Modelling the Problem: Objective & Model

Objective is to **identify the probabilities** in such a way we **maximise** the **chance** to detect the threat

 v^t : location of the target, (v_1, v_2) , at time step $t, v_1 \in [0, m], v_2 \in [0, l], 0 \le t \le L$

UAV moves with a function $F(P, \varepsilon)$

 $T = \begin{cases} \mathsf{t}, & \text{if } \|\mathbf{u}^t, v^t\| < R, \quad 0 < \mathsf{t} \le L \\ M, & \text{otherwise} \end{cases} \qquad D_k = \begin{cases} 1, & \text{if } 0 < t \le L \\ 0, & \text{if } t = M \end{cases}$

maximise $\frac{1}{S}\sum_{k=1}^{S}D_k$ **PoS**

40th ISMOR, July 2023, Busra Biskin

40th ISMOR, July 2023, Busra Biskin

- Simulated Annealing Algorithm
- Stochastic Nelder-Mead Method
- Response Surface Methodology with Radial Basis Function

- Simulated Annealing Algorithm (
- Stochastic Nelder-Mead Method (>
- Response Surface Methodology with Radial Basis Function

- Simulated Annealing Algorithm × worse execution time worse results
 Stochastic Nelder-Mead Method × worse execution time similar results
 - Response Surface Methodology with Radial Basis Function

- Simulated Annealing Algorithm (imes)
- Stochastic Nelder-Mead Method

worse execution time worse results

worse execution time similar results

Response Surface Methodology with Radial Basis Function

A viable method for a complex system entails a response y = F(x) that relies on the parametric design variables $x = [x_1, ..., x_n]^T$, which in our context refer to $P = [p_W, p_E, p_S, p_N]$. An appropriate estimation of the function F(x), F(P) in our case, will be formulated, given that the function itself is assumed to be unknown and complicated.

4. Methodology: Radial Basis Function

Radial basis functions have the form

$$F(\mathbf{x}) = \sum_{i=1}^{m} \beta_i \phi(r_i, c), \tag{1}$$

where $r_i(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_i\|$ is the distance of the point \mathbf{x} from the *i*th data point \mathbf{x}_i in the parameter space, $\|\cdot\|$ denotes the Euclidean norm, $\phi(\cdot)$ is a suitably chosen radial basis function, *c* is a user-defined constant which is usually required to be non-negative, and β_i is the radial basis coefficient corresponding to the *i*th data point.

Number of UAVs	I - 2		
Number of decision stages to change P	I - 2		
Mission area	University of Southampton Highfield Campus		
	length	width	
	610 m	560 m	
How much faster UAVs then threats?	10 times		
d	10 m		
R	20 m		
Number of paths that threat can choose	differs (1- 3- 6)		
number of starting solutions	20		

Scenario I	Scenario 2	Scenario 3	Scenario 4
I UAV moves with a set of probabilities decided at the beginning of the mission.	I UAV makes n moves with a probability set decided at the beginning of the mission and uses another set of probabilities after n moves for (L-n) moves.	2 UAVs move with a set of probabilities decided at the beginning of the mission. The mission is accepted as successful if one of them detects the target.	2 UAVs, similar to Scenario 3, except they start from 2 different corners: South-West and North-East
[Pw, PE , Ps , PN]	[Pw1, PE1, PS1, PN1, Pw2, PE2, PS2, PN2]	[Pw1, PE1, PS1, PN1, Pw2, PE2, PS2, PN2]	[Pw1, PE1, PS1, PN1, Pw2, PE2, PS2, PN2]
I decision stage I UAV 4 decision variables	2 decision stagesI UAV8 decision variables	l decision stage 2 UAVs 8 decision variables	I decision stage 2 UAVs 8 decision variables

+ with ground sensor

Scenario I	Scenario 2	Scenario 3	Scenario 4
I UAV moves with a set of probabilities decided at the beginning of the mission.	I UAV makes n moves with a probability set decided at the beginning of the mission and uses another set of probabilities after n moves for (L-n) moves.	2 UAVs move with a set of probabilities decided at the beginning of the mission. The mission is accepted as successful if one of them detects the target.	2 UAVs, similar to Scenario 3, except they start from 2 different corners: South-West and North-East
[Pw, PE , Ps , PN]	[Pw1, PE1, PS1, PN1, Pw2, PE2, PS2, PN2]	[Pw1, PE1, PS1, PN1, Pw2, PE2, PS2, PN2]	[Pw1, PE1, PS1, PN1, Pw2, PE2, PS2, PN2]
I decision stage I UAV 4 decision variables	2 decision stagesI UAV8 decision variables	l decision stage 2 UAVs 8 decision variables	I decision stage 2 UAVs 8 decision variables

+ with ground sensor

6. Results

Scenario	best solution (W, E, S, N)	PoS	E[T]	standard deviation	execution time (sec)
 I decision stage I UAV 4 dv 	[0.114, 0.252, 0.251, 0.383]	0.231	212.94	36.42	167.99
I) + sensor	[0.676, 0.001, 0.001, 0.322]	0.414	88.38	1.59	117.05
2 decision stagesI UAV8 dv	[0.299, 0.201, 0.042, 0.458] [0.134, 0.632, 0.056, 0.178]	0.283	122.13	10.85	173.81
2) + sensor	[0.001, 0.698, 0.001, 0.300] [0.659, 0.001, 0.001, 0.339]	0.422	66.73	1.39	126.52
 3) I decision stage 2 UAVs, same corner 8 dv 	[0.199, 0.594, 0.001, 0.206] [0.001, 0.603, 0.001, 0.395]	0.457	82.16	19.67	304.94
3) + sensor	[0.030, 0.629, 0.001, 0.340] [0.708, 0.001, 0.001, 0.290]	0.705	85.1	5.42	178.35
 4) I decision stage 2 UAVs, different corners 8 decision variables 	[0.001, 0.001, 0.791, 0.207] [0.201, 0.001, 0.797, 0.001]	0.506	43.2	1.28	276.12
4) + sensor	[0.010, 0.454, 0.135, 0.401] [0.697, 0.001, 0.001, 0.301]	0.685	76.17	8.45	208.6

^{▶ 40&}lt;sup>th</sup> ISMOR, July 2023, Busra Biskin

6. Results

Scenario	best solution (W, E, S, N)	PoS	E[T]	standard deviation	execution time (sec)
I decision stageI UAV4 dv	[0.114, 0.252, 0.251, 0.383]	0.231	212.94	36.42	167.99
I) + sensor	[0.676, 0.001, 0.001, 0.322]	0.414 4	88.38	1.59	117.05
 2 decision stages I UAV 8 dv 	[0.299, 0.201, 0.042, 0.458] [0.134, 0.632, 0.056, 0.178]	0.283	122.13	10.85	173.81
2) + informati	on effect	۷ 0.422	66.73	1.39	126.52
3) I (Sen 2 OAvs, same corner 8 dv	SOR) [0.001, 0.603, 0.001, 0.395]	0.457	82.16	19.67	304.94
3) + sensor	[0.030, 0.629, 0.001, 0.340] [0.708, 0.001, 0.001, 0.290]	0.705	85.1	5.42	178.35
4) I decision stage2 UAVs, different corners8 decision variables	[0.001, 0.001, 0.791, 0.207] [0.201, 0.001, 0.797, 0.001]	0.506	43.2	1.28	276.12
4) + sensor	[0.010, 0.454, 0.135, 0.401] [0.697, 0.001, 0.001, 0.301]	0.685	76.17	8.45	208.6

6. Results

Scenario	best solution (W, E, S, N)	PoS	E[T]	standard deviation	execution time (sec)
I) I decision stage I UAV 4 dv	[0.114, 0.252, 0.251, 0.383]	0.231	212.94	36.42	167.99
I) + s		0.414	88.38	1.59	117.05
2) 2 Stage e	[0.134, 0.632, 0.056, 0.178]	0.283 V	122.13	10.85	173.81
2) + s one more UAV effect 01, 0.300 0.422 66.73			1.39	126.52	
3) I decision stage2 UAVs, same corner8 dv	[0.199, 0.594, 0.001, 0.206] [0.001, 0.603, 0.001, 0.395]	0.457	82.16	19.67	304.94
3) + se different star	ting points 01, 0.340]	0.705	85.1	5.42	178.35
4) I de effe 2 UAvs, amerent corners 8 decision variables	ct91, 0.207] [0.201, 0.001, 0.797, 0.001]	0.506	43.2	1.28	276.12
4) + sensor	[0.010, 0.454, 0.135, 0.401] [0.697, 0.001, 0.001, 0.301]	0.685	76.17	8.45	208.6

Heatmaps of frequency of UAV visits over the simulation in the mission area

40th ISMOR, July 2023, Busra Biskin

6. Experiment: random walk for the target

^{40&}lt;sup>th</sup> ISMOR, July 2023, Busra Biskin

7. Challenges

• NOISE

• Execution Time

more decision stages/ \rightarrow more decision variables \rightarrow increased execution time more UAVs

^{40&}lt;sup>th</sup> ISMOR, July 2023, Busra Biskin

9. Further Study

- Decreasing the noise
- More decision stages for UAVs
- Communication of UAVs
- Application of the model in different operations: monitoring wildlife, disaster relief operations, search and rescue operations

References

I Peter Burt and Jo Frew: 'Crossing A Line | The use of drones to control border'. Drone Wars UK, December 2020. https://dronewars.net/wp-content/uploads/2020/12/DW-Crossing-a-Line-WEB.pdf

How UAV moves in the border?

▶ 40th ISMOR, July 2023, Busra Biskin

Mathematical Model

$$T = \begin{cases} t, & \text{if } \|u^t, v^t\| < R, \quad 0 < t \le L \\ M, & \text{otherwise} \end{cases}$$

minimise $E[T] \simeq \frac{1}{S} \sum_{k=1}^{S} Y(P, \xi_k)$

s.t.

$$\sum_{i} p_{i} = 1 \quad i \in W, E, S, N$$
$$0 < p_{i} < 1 \quad i \in W, E, S, N$$

Steps of RBF

- 1. A particular basis function $\phi(r, c)$ is chosen. In this paper we will be using functions from the five classes in (14). Within each class, a particular member is determined by the value assigned to the constant c.
- 2. The data points are scaled so each component of x is in the range $-1 \le x_i \le 1$.
- 3. An $m \times m$ symmetric matrix $\mathbf{R} = [r_{ij}]$ is constructed, where *m* is the number of data points. Each entry r_{ij} of this matrix is the Euclidean distance between data points \mathbf{x}_i and \mathbf{x}_j .
- 4. The chosen basis function $\phi(r, c)$ is applied component-wise to the matrix **R**, creating the matrix **A**.
- 5. The matrix equation $\mathbf{A}\boldsymbol{\beta} = \mathbf{F}$ is solved, where each component F_i of the vector $\mathbf{F} = [F_1, \dots, F_m]^\top$ is the objective function value at the corresponding data point \mathbf{x}_i . The resulting vector $\boldsymbol{\beta} = [\beta_1, \dots, \beta_m]^\top$ is the vector of radial basis coefficients.
- 6. The model function value $f(\mathbf{x})$ at an arbitrary point \mathbf{x} within the parameter space is found in the following manner. A vector $\mathbf{g}(\mathbf{x}) = [g_1, \dots, g_m]^{\top}$ is constructed whose components g_i are obtained by the formula $g_i = \phi(r_i(\mathbf{x}), c)$, where $r_i(\mathbf{x})$ is the distance between \mathbf{x} and the *i*th data point \mathbf{x}_i . Then

$$f(\mathbf{x}) = \boldsymbol{\beta}^{\mathsf{T}} \mathbf{g}(\mathbf{x}) = \sum_{i=1}^{m} \{ \beta_i g_i \}.$$
(15)

Additional Graphs

