Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Co-ordinated Operation of Queues at Congested Arterial Signalised Intersections

César D. Velandia, Ruibin Bai, Graham Kendall and Jason Atkin

ASAP Research Group

September 5, 2012 - OR54

UNITED KINGDOM · CHINA · MALAYSIA

Overview

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

-

- 1 Introduction
- **2** Control and Models
- **3** Model for Co-ordination of Queues
- 4 Final Remarks

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Overview

1 Introduction

Motivation Traffic Signals at Intersections Co-ordination and Arterial Roads Requirements Challenges

2 Control and Models

3 Model for Co-ordination of Queues

4 Final Remarks

Motivation

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

* Congestion has dramatic impacts on road operations accross the world

Motivation

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

- * Congestion has dramatic impacts on road operations accross the world
- * Efficient **traffic signal** operation is a cost-effective method to deal with congestion

Motivation

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

- * Congestion has dramatic impacts on road operations accross the world
- * Efficient **traffic signal** operation is a cost-effective method to deal with congestion
- * During congested conditions, queue management is a decisive consideration

Motivation

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

- * Congestion has dramatic impacts on road operations accross the world
- * Efficient **traffic signal** operation is a cost-effective method to deal with congestion
- * During congested conditions, queue management is a decisive consideration
 - * preventing further deterioration of traffic conditions,

Motivation

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

- * Congestion has dramatic impacts on road operations accross the world
- * Efficient **traffic signal** operation is a cost-effective method to deal with congestion
- * During congested conditions, queue management is a decisive consideration
 - * preventing further deterioration of traffic conditions,
 - * improving total vehicular throughput

Motivation

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

- * Congestion has dramatic impacts on road operations accross the world
- * Efficient **traffic signal** operation is a cost-effective method to deal with congestion
- * During congested conditions, queue management is a decisive consideration
 - * preventing further deterioration of traffic conditions,
 - * improving total vehicular throughput
 - * and relieving existing congestion hotspots

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Traffic Signals at Intersections a 2-phase signal controller

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Traffic Signals at Intersections a 2-phase signal controller

Definition (Phase)

A set containing one or multiple simultaneous conflict-free movements.

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Traffic Signals at Intersections a 2-phase signal controller

Definition (Phase)

A set containing one or multiple simultaneous conflict-free movements.

Definition (Timing variables)

* **Cycle length** is the time required to complete all phases

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Traffic Signals at Intersections a 2-phase signal controller

Definition (Phase)

A set containing one or multiple simultaneous conflict-free movements.

Definition (Timing variables)

- * **Cycle length** is the time required to complete all phases
- * **Green splits** are relative green durations assigned to each phase

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Traffic Signals at Intersections a 2-phase signal controller

Definition (Phase)

A set containing one or multiple simultaneous conflict-free movements.

Definition (Timing variables)

- * **Cycle length** is the time required to complete all phases
- * **Green splits** are relative green durations assigned to each phase
- * **Phasing** is the composition and sequence of the signal phases

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Traffic Signals at Intersections a 2-phase signal controller

Definition (Phase)

A set containing one or multiple simultaneous conflict-free movements.

Definition (Timing variables)

- * **Cycle length** is the time required to complete all phases
- * **Green splits** are relative green durations assigned to each phase
- * **Phasing** is the composition and sequence of the signal phases
- * and Offsets ...

Time

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Co-ordination and Offsets in a 3-intersection arterial road

Definition (Offset)

Time between the start of co-ordinated phases and a master clock.

Control and Models

Model for Co-ordination of Queues

Final Remarks

Requirements

* Use green times efficiently

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Requirements

- * Use green times efficiently
- * Co-ordinate phases along arterials roads

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Requirements

- * Use green times efficiently
- * Co-ordinate phases along arterials roads
- * Have reasonable waiting times in minor phases (cross-traffic)

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Requirements

- * Use green times efficiently
- * Co-ordinate phases along arterials roads
- * Have reasonable waiting times in minor phases (cross-traffic)
- * Maintain adequate queue lengths

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Requirements

- * Use green times efficiently
- * Co-ordinate phases along arterials roads
- * Have reasonable waiting times in minor phases (cross-traffic)
- * Maintain adequate queue lengths
- * Dissipate queues and promote progression

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Challenges

- * Size of the networks to co-ordinate.
- * Uncertainty in traffic (unknown demands), reductions in capacity.
- * Detection and estimation of indicators and decision variables.
- * Oversaturated control is intrinsically different from undersaturated
- * Real-time traffic adaptive control

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Overview

1 Introduction

2 Control and Models

Classification The Bandwidth Maximisation Problem Queue Management Strategies

3 Model for Co-ordination of Queues

4 Final Remarks

Control and Models $\bullet \circ \circ \circ \circ$

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control: Strategy

Classification

- Offline: Fixed-time, Actuated
- Online: Adaptive, Proactive

Control and Models $\bullet \circ \circ \circ \circ$

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control: Strategy

Classification

- Offline: Fixed-time, Actuated
- Online: Adaptive, Proactive

Control: No. of Intersections

- Isolated
- Co-ordinated

Control and Models $\bullet \circ \circ \circ \circ$

Classification

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control: Strategy

- Offline: Fixed-time, Actuated
- Online: Adaptive, Proactive

Control: No. of Intersections

- Isolated
- Co-ordinated

Models: Objective Function

- Min Disutility: Delay, Stops, Travel time
- Max MoE: Throughput, *Bandwidth*, No. of arrivals on green

Control and Models $\bullet \circ \circ \circ \circ$

Classification

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control: Strategy

- Offline: Fixed-time, Actuated
- Online: Adaptive, Proactive

Control: No. of Intersections

- Isolated
- Co-ordinated

Models: Objective Function

- Min Disutility: Delay, Stops, Travel time
- Max MoE: Throughput, *Bandwidth*, No. of arrivals on green

Models: Approach

- Mathematical programming
- Simulation-based

Control and Models $\circ \bullet \circ \circ \circ$

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

The Bandwidth Maximisation Problem

* The BMP model finds offline settings for co-ordinated arterial roads based on directional bands.

¹ Little, J.D.C., 1966. The synchronization of traffic signals by mixed-integer linear programming C.D. Velandia, R. Bai, G. Kendall and J. Atkin – Co-ordinated Queues at Congested Arterial Intersections 28

Control and Models $\circ \bullet \circ \circ \circ$

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

The Bandwidth Maximisation Problem

* The BMP model finds offline settings for co-ordinated arterial roads based on directional bands.

BMP: Little's ¹ MILP formulation Given cycle time, splits, travel times $t_i(\bar{t}_i)$ (or speeds), queue clearances $\tau_i(\bar{\tau}_i)$ Find bandwidth b, \overline{b} interferences w_i , $\bar{w_i}$ offsets $\phi_i, \bar{\phi}_i, \Delta_i, \Delta_{i+1}, m_i$ $b = \overline{b}$ to maximise subject to interference constraints loop-integer constraints $b, w_i, \bar{w}_i > 0$ i = 1, ..., n $m_i = integer$

source: http://www.tmr.qld.gov.au/

Little, J.D.C., 1966. The synchronization of traffic signals by mixed-integer linear programming C.D. Velandia, R. Bai, G. Kendall and J. Atkin – Co-ordinated Queues at Congested Arterial Intersections 29

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

The Bandwidth Maximisation Problem Geometry

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

The Bandwidth Maximisation Problem Geometry

Inbound

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control and Models $\circ \circ \circ \circ \circ \circ$

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Queue Management Strategies

Sequence of traffic signal algorithms for clearance of peak hour queues (source: Quinn, 1992) at isolated intersections

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Queue Management Strategies

Sequence of traffic signal algorithms for clearance of peak hour queues (source: Quinn, 1992) along arterials

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Queue Management Strategies

Sequence of traffic signal algorithms for clearance of peak hour queues (source: Quinn, 1992) along arterials

Not so easy...

* What happens to the progression bands as queues build up at the downstream?

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Queue Management Strategies

Sequence of traffic signal algorithms for clearance of peak hour queues (source: Quinn, 1992) along arterials

Not so easy...

- * What happens to the progression bands as queues build up at the downstream?
- * How to clear existing queues and produce bands simultaneously?

Control and Models $\circ \circ \circ \circ \bullet$

Revised Objectives for Queue Management

Objective 1

 Avoid band disruptions due to downstream queues. In case this isn't possible see Objective 2. Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Objective 2

- * Dissipate queues and keep the vehicles moving (platooning).
- * Use a reverse progression (neg. offset) if queue overflows to upstream intersections.

Control and Models

Revised Objectives for Queue Management

Objective 1

 Avoid band disruptions due to downstream queues. In case this isn't possible see Objective 2. Model for Co-ordination of Queues

Final Remarks

Objective 2

- * Dissipate queues and keep the vehicles moving (platooning).
- * Use a reverse progression (neg. offset) if queue overflows to upstream intersections.

And...

- Reduce stress at critical intersections (distributing queues, equity principle, traffic metering) by reducing incoming traffic and larger green times.
- * Maintain cross-traffic queues at acceptable lengths, while considering turners contribution to the arterial traffic.

Control and Models

Model for Co-ordination of Queues $_{\odot \odot \odot \odot}$

Final Remarks

Overview

1 Introduction

2 Control and Models

3 Model for Co-ordination of Queues Basic Model Simulation-based Optimisation Simulation of Traffic Improved Model

4 Final Remarks

Control and Models

Model for Co-ordination of Queues $_{\odot \odot \odot \odot}$

Final Remarks

Basic Model Combining co-ordination and queue control

Control and Models

Model for Co-ordination of Queues $_{\odot \odot \odot \odot}$

Final Remarks

Basic Model Combining co-ordination and queue control

How to represent queue and intersection interactions with enough detail to achieve the revised objectives?

Control and Models

Model for Co-ordination of Queues $\circ \bullet \circ \circ$

Final Remarks

Simulation-based Optimisation

source: Carson and Maria (1997)

Definition (Carson and Maria, ibid)

The process of finding the best input variable values without explicitly evaluating each possibility... Minimising resources spent while maximising the information obtained...

- * Reproduces rare scenarios and occurrences
- Several techniques (including GAs and hyperheuristics have been adapted to SO)
- * Provide high level of accuracy
- * Computationally Expensive

in traffic

 Simulation is already used in traffic studies to evaluate solutions before deployment and to optimise.

Control and Models

Model for Co-ordination of Queues 0000

Final Remarks

Simulation of Traffic Classification

http://www.its.dot.gov

- * Macro: Based on formulae relating speed, density and flow
- * Meso: Symplified flow dynamics (e.g, combining vehicles in platoons, flows and densities per road link)
- * Micro: Interaction between vehicles, driver perceptions and lane interactions.

¹

Liu, Y. and Chang, G., 2011. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage. Transportation Research Part C: Emerging Technologies, 19(1), pp.130 - 144.

C.D. Velandia, R. Bai, G. Kendall and J. Atkin - Co-ordinated Queues at Congested Arterial Intersections 47

Control and Models

Model for Co-ordination of Queues $\circ \circ \bullet \circ$

Final Remarks

Simulation of Traffic Classification

http://www.its.dot.gov

- * Macro: Based on formulae relating speed, density and flow
- Meso: Symplified flow dynamics (e.g, combining vehicles in platoons, flows and densities per road link)
- * Micro: Interaction between vehicles, driver perceptions and lane interactions.
 - Detailed representation of difficult queue dynamics and complex intersections, e.g, impact of turning traffic better than BMP ¹

¹

Liu, Y. and Chang, G., 2011. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage. Transportation Research Part C: Emerging Technologies, 19(1), pp.130 - 144.

C.D. Velandia, R. Bai, G. Kendall and J. Atkin - Co-ordinated Queues at Congested Arterial Intersections 48

Model for Co-ordination of Queues $\circ \circ \circ \bullet$

Final Remarks

Improved Model including microsimulation

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks

Overview

1 Introduction

2 Control and Models

3 Model for Co-ordination of Queues

Final Remarks Conclusions References

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks ●○○

Conclusions

- * Traffic signal timing optimisation is a hard problem that hasn't been solved satisfactorily for oversaturated networks.
- * Combining methodologies (mathematical and simulation-based) different aspects of the problem could be solved.
- * Traffic models can describe queues using microsimulation and in turn co-ordinate them at arterial roads.
- * Queues haven't been addressed actively in the context of co-ordinated arterials. Managing queues is crucial for effective traffic control.
- * Other co-ordination methods, such as the combination technique (Gazis, 2002) could be used instead of the BMP.

Control and Models

Model for Co-ordination of Queues

Final Remarks ○●○

References

- * Abu-Lebdeh, G. and Benekohal, R.F., 2003. Design and evaluation of dynamic traffic management strategies for congested conditions. Transportation Research Part A: Policy and Practice, 37(2), pp.109 127.
- * Carson, Y. and Maria, A., 1997. Simulation optimization: methods and applications. In Proceedings of the 29th conference on Winter simulation. Washington, DC, USA: IEEE Computer Society, pp. 118 126.
- * Gazis, D.C., 2002. Traffic theory, Kluwer Academic.
- * Quinn, D., 1992, A Review of Queue Management Strategies, Drive II Project V2016 : Primavera Project Report, Leeds, UK.
- * Little, J.D.C., 1966. The synchronization of traffic signals by mixed-integer linear programming. Operations Research, 14(4), pp.568 594.
- * Liu, Y. and Chang, G., 2011. An arterial signal optimization model for intersections experiencing queue spillback and lane blockage. Transportation Research Part C: Emerging Technologies, 19(1), pp.130 144.
- * Pillai, R.S., Rathi, A.K. and L. Cohen, S., 1998. A restricted branch-and-bound approach for generating maximum bandwidth signal timing plans for traffic networks. Transportation Research Part B: Methodological, 32(8), pp.517 529
- * Photographies from flickr.com. All rights to the respective owners.

Control and Models

Model for Co-ordination of Queues $_{\rm OOOO}$

Final Remarks ○○●

Thank you for your attention and attendance