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►What is robust optimisation? 
►Why does it matter? 

►A real world example 

►Some simple examples 
►Shortest path 

►Knapsack 
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Pre-requisites 

► Linear and mixed integer programming 

► Modelling and implementation 

► Desirable 
►Mosel modelling language 

►Installation of Xpress 7.7 or later 
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What is robust optimisation? 
Why does it matter? 
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Why does robust optimisation matter? 

► Optimisation problems often use data that are subject to uncertainty 
► inaccurate, erroneous, missing measurements 

►data that are not yet known 

►rely on estimates or extrapolations of historic data 

► influenced by external events not captured by the model 

► How can we make decisions without knowing the parameters? 
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Why does robust optimisation matter? 

► Key idea: although some parameters are uncertain, we might know how 
they vary 
►the accuracy of a given parameter is  = 10-4 

►a vector of parameters 𝒖 has a mean 𝒖  and covariance matrix 𝑸  

► Some parameters are uncertain but we have good knowledge of the 
uncertainty set 

► Robust optimisation finds a solution that is feasible for any/all values of 
the parameters in the uncertainty set 
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Why does robust optimisation matter? 

► Robust optimisation is about finding the optimal solution of the worst 
case realisation of a problem 
►Accounting for data quality and forecast distribution during the optimisation 

process 

► Describing the worst case scenario is not trivial 
►Infinite number of realisations 

►Unknown realisation space 
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Why does robust optimisation matter? 

► Possible approaches 
►build into the model formulation 

►use suitable solution methods 

►post process results 

► Robust optimisation provides a modelling paradigm that offers solutions 
when uncertainty in the input data can be bounded within a well 
described region 
►finds a solution that is feasible regardless of the realisation of the uncertain 

values 

►different from Stochastic Optimisation where the expected value is optimised 
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Robust optimisation in a nutshell (mathematical concepts) 

► Deterministic problem 
► min

𝑥∈ℝ𝑛
𝑐. 𝑥 | 𝐴. 𝑥 ≥ 𝑏, 𝐷. 𝑥 ≥ 𝑙  

►𝐴 is the structural data of the problem. It is known for sure. 

►𝐷 is an approximation of the real world.  

► Robust counterpart 

► min
𝑥∈ℝn

𝑐. 𝑥 | 𝐴. 𝑥 ≥ 𝑏, (𝐷 + 𝜉𝑎). 𝑥 ≥ 𝑙, ∀𝜉 ∈ U   

► min
𝑥∈ℝn

𝑐. 𝑥 | 𝐴. 𝑥 ≥ 𝑏, m𝑖𝑛
𝜉∈𝑈

 𝐷 + 𝜉𝑎 . 𝑥 ≥ 𝑙   

►U is the set of perturbations of non-structural data 

►𝜉𝑎 is the error term 

►𝑥 must be feasible for all possible perturbation 

►U must be carefully designed to be tractable 
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Robust optimisation in a nutshell (constraints) 

► Deterministic constraint 
   𝑎1𝑥1 + … + 𝑎𝑘−1𝑥𝑘−1+ 𝑎𝑘𝑥𝑘+ … + 𝑎𝑛𝑥𝑛≤ 𝑏 
where 

  𝑎𝑖 – coefficient 

  𝑥𝑖 – decision variable 
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Robust optimisation in a nutshell (constraints) 

► Deterministic constraint 
   𝑎1𝑥1 + … + 𝑎𝑘−1𝑥𝑘−1+ 𝑎𝑘𝑥𝑘+ … + 𝑎𝑛𝑥𝑛 ≤ 𝑏 
where 

  𝑎𝑖 – coefficient 

  𝑥𝑖 – decision variable 

► Robust constraint 
   𝑎1𝑥1 + … + 𝑎𝑘−1𝑥𝑘−1+(𝑎𝑘 + 𝑢𝑘)𝑥𝑘 + … + (𝑎𝑛 + 𝑢𝑛)𝑥𝑛 ≤ 𝑏 
where 

 𝑢𝑖 – uncertainty on coefficient values 
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Robust optimisation in a nutshell (constraints) 

► Deterministic constraint 
   𝑎1𝑥1 + … + 𝑎𝑘−1𝑥𝑘−1+ 𝑎𝑘𝑥𝑘+ … + 𝑎𝑛𝑥𝑛 ≤ 𝑏 
where 

  𝑎𝑖 – coefficient 

  𝑥𝑖 – decision variable 

► Robust constraint 
   𝑎1𝑥1 + … + 𝑎𝑘−1𝑥𝑘−1+(𝑎𝑘 + 𝑢𝑘)𝑥𝑘 + … + (𝑎𝑛 + 𝑢𝑛)𝑥𝑛 ≤ 𝑏 
where 

 𝑢𝑖 – uncertainty on coefficient values 

► Requirement: the uncertainty must be bounded 
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Robust optimisation in a nutshell (terminology) 

► The feasible region of the uncertains is called the uncertainty set, it is 
modelled by means of constraints on the uncertains 
►the type of a robust constraint is defined by the type of uncertainty set (or sets) 

on its uncertains 

►solvability depends on whether the robust constraints can be transformed into 
a form (the so-called robust counterpart) that can be solved by the available 
mathematical solvers 
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Robust optimisation in a nutshell (robust counterparts) 

► The Box 
►Lower and upper bounds on possible value range 

►𝑈 = 𝜉 ∶ 𝑎𝑏𝑠(𝜉𝑖) ≤ 𝑑, 𝜉𝑖 ∈ 𝜉𝑖 , 𝜉𝑖 , ∀𝑖 ∈ 𝑁  

 

►Worst error term in a greater-than-equal constraint 

►𝑟𝑐 𝑥 =  min𝜉∈𝑈 (𝜉𝑎). 𝑥 ∶ 𝑎𝑏𝑠 𝜉𝑖 ≤ 𝑑, 𝜉𝑖 ∈ 𝜉𝑖 , 𝜉𝑖 , ∀𝑖 ∈ 𝑁  

►𝑥 ≥ 0, 𝑑 ≥ 0 

 

►Closed form solution 

►𝑟𝑐 𝑥 = (𝜉 𝑎). 𝑥 

►With 𝜉𝑖
 = min max 𝜉𝑖 , −𝑑 , min 𝜉𝑖 , 𝑑  
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Robust optimisation in a nutshell (robust counterparts) 

► The Ellipsoid 
►Maximum distance or deviation 

►𝑈 = 𝜉 ∶  𝜉𝑖
2

𝑖 ≤ 𝑑2, ∀𝑖 ∈ 𝑁  

 

►Worst error term in a greater-than-equal constraint 

► rc 𝑥 = min𝜉∈𝑈 (𝜉𝑎). 𝑥 ∶   𝜉𝑖
2

𝑖 ≤ 𝑑2  

► 𝑥 ≥ 0 

 

►Closed form solution 

►𝑟𝑐 𝑥 = −𝑑  𝑎𝑖 . 𝑥𝑖
2

𝑖   
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Robust optimisation in a nutshell (robust counterparts) 

► The Polyhedron 
►Linear dependency and bounds of error term 

►𝑈 = 𝜉 ∶   𝜉𝑖𝑖 ≤ 𝑑, ∀𝑖 ∈ 𝑁  

 

►Worst error term in a greater-than-equal constraint 
►rc 𝑥 = min𝜉∈𝑈 𝜉. 𝑥 ∶   𝜉𝑖𝑖 ≤ 𝑑  

► 𝑥 ≥ 0 

 

►Robust counterpart 
►Assume 𝑥 ≥ 0 , and fixed 

►Apply LP Strong duality 
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A real-world case: air products and chemicals1 

► Production planning at a liquid oxygen/nitrogen plant, a very energy-
intensive operation 
► Interruptible Load Contract (ILC): power company can suspend supply in periods of high 

demand (summer) 

► At most 𝑘 interruptions each month (8 hours each) 

► Cheaper (per kWh) than with uninterrupted contract 

► The power supplier won’t tell us when the interruptions will be 
►Treat the interruptions as uncertains 

►Plan production so that even with the most evil-placed 𝑘 interruptions we 
satisfy customer demand 

1Latifoglu, C., Belotti, P., Snyder, L.V. (2013). Models for production planning under power 

interruptions. Naval Research Logistics 60(5):413-431. 
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Original model 

declarations 

 produce: array (PERIODS, GASES) of mpvar 

 inventory: array (PERIODS, GASES) of mpvar 

  

end-declarations 

forall(t in PERIODS, g in GASES) do 

 inventory(0, g) + sum(tp in PERIODS | tp <= t) 

  produce(tp, g) - DEMAND(tp, g)) >= 0 

 inventory(t, g) <= INV_CAP (g) 

 produce(t, g) <= PROD_CAP (g) 

end-do 

 

minimize(sum (t in PERIODS, g in GASES) 

  (PROD_COST * produce(t,g) + INV_COST * inventory(t,g))) 
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Robust model 

declarations 

 produce: array (PERIODS, GASES) of mpvar 

 inventory: array (PERIODS, GASES) of mpvar 

 interrupt: array (PERIODS) of uncertain 

end-declarations 

forall(t in PERIODS, g in GASES) do 

 inventory(0, g) + sum(tp in PERIODS | tp <= t) 

  ((1 - interrupt(tp)) * produce(tp, g) - DEMAND(tp, g)) >= 0 

 inventory(t, g) <= INV_CAP (g) 

 produce(t, g) <= PROD_CAP (g) 

end-do 

sum(t in PERIODS) interrupt (t) <= MAX_NINTERR 

minimize(sum (t in PERIODS, g in GASES) 

  (PROD_COST * produce(t,g) + INV_COST * inventory(t,g))) 
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The user vs. opponent 
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User vs. opponent perspective 

► Robustness implies we are prepared against any realisation of 𝒖. 
►We (the user) have power over the decision variables 𝑥 

►Uncertain parameters 𝒖 are not in our control 

►An opponent controls 𝒖 : 
►nature 

►competitor, supplier or customer 

►market 

►Akin to a leader-follower game: we (leader) make a decision on 𝒙 and the 
opponent (follower) gets to choose 𝒖 after we made our decision 

►the opponent has a PhD in optimisation and will pick 𝒖 that violate the user’s constraints 
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Robust shortest path 
A simple example 
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Robust shortest path 

► Find the shortest route from A to B on the city’s road network 
► it takes 𝑐𝑒 minutes to drive on road 𝑒 

►unless there’s construction work, and then it’s 𝑐𝑒 + 𝑑𝑒 

►we don’t know where the construction work is 

►but we know it is on at most 𝑘 roads 

► Decider:  the user 

► Opponent:  city’s contractors, with 𝑘 crews working every day 
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Robust shortest path 

► Each link 𝑒 has (𝑐𝑒, 𝑑𝑒). Suppose at most 𝑘 = 2 construction zones. 

 

 

 

 

 

 

 

► How long to get from A to B? 
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Robust shortest path 

► Each link 𝑒 has (𝑐𝑒, 𝑑𝑒). Suppose at most 𝑘 = 2 construction zones. 

 

 

 

 

 

 

 

► An example implementation: roadworks.mos 

 

code samples/roadworks.mos
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Robust knapsack 
Project selection 
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Robust knapsack – project selection 

► Select among five projects such that 
►total profit is maximised (each project has profit 𝑝𝑖 ) 

►total cost is within budget 𝐵 

►cost of each project: 𝑐𝑖 = 𝑎𝑖 + 𝑢𝑖 , with 𝑢𝑖 uncertain 

minimise  𝑝1𝑥1 + 𝑝2𝑥2 + 𝑝3𝑥3 + 𝑝4𝑥4 + 𝑝5𝑥5 

s.t.   𝑐1𝑥1 + 𝑐2𝑥2 + 𝑐3𝑥3 + 𝑐4𝑥4 + 𝑐5𝑥5 ≤ 𝐵 

   𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ∈ 0,1   
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Robust knapsack – project selection 

► Suppose we know 𝑈 = 𝑢𝑖 ≥ 0, 𝑖 = 1,2, … , 5,  𝑢𝑖 ≤ 0.045
𝑖=1  

►then we want to solve the following robust counterpart 

minimise   𝑝𝑖𝑥𝑖
5
𝑖=1  

s.t.  𝑚𝑎𝑥  𝑎𝑖 + 𝑢𝑖 𝑥𝑖
5
𝑖=1 ≤ 𝐵 

   𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ∈ 0,1   

► Alternatively, 𝒖 has mean 0 with covariance matrix 𝑄 and confidence 
level 𝛼, i.e. 𝒖𝑇𝑄𝒖 ≤ 𝛼 

minimise   𝑝𝑖𝑥𝑖
5
𝑖=1  

s.t.  𝑚𝑎𝑥𝒖:𝒖𝑇𝑄𝒖≤𝛼  𝑎𝑖 + 𝑢𝑖 𝑥𝑖
5
𝑖=1 ≤ 𝐵 

   𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ∈ 0,1   
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Robust knapsack – project selection 

► Another alternative: we don’t have a model for 𝒖, but we have historical 
data: values for 𝒖 for the past 12 years: 𝒖𝟐𝟎𝟏𝟑 , 𝒖𝟐𝟎𝟏𝟐 , …, 𝒖𝟐𝟎𝟎𝟐 . 
►We at least require that our constraint be satisfied for the past values of u. 

minimise   𝑝𝑖𝑥𝑖
5
𝑖=1  

s.t.   𝑎𝑖 + 𝑢𝑖
2013 𝑥𝑖

5
𝑖=1 ≤ 𝐵 

    𝑎𝑖 + 𝑢𝑖
2012 𝑥𝑖

5
𝑖=1 ≤ 𝐵 

  ⁞ 

   𝑎𝑖 + 𝑢𝑖
2002 𝑥𝑖

5
𝑖=1 ≤ 𝐵 

  𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5 ∈ 0,1   

► Some example implementations: 
► knapsack_basic.mos, knapsack_ellipsoid.mos, knapsack_scenario.mos 

code samples/knapsack_basic.mos
code samples/knapsack_ellipsoid.mos
code samples/knapsack_scenario.mos
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To summarise 

► There are several classes of uncertainty set 
►polyhedral: a system of linear equations/inequalities on 𝒖 

►ellipsoidal: a quadratic constraint 𝒖𝑇𝑄𝒖 ≤ 𝛼 

►scenarios: a list of historical values of 𝒖 

► To solve the problem 
1. construct the robust counterpart, a robust version of the problem 

2. solve the robust counterpart 

3. return the optimal solution of the robust counterpart as the solution of the 
original problem. 
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How does robustness change problem difficulty 

► If a polyhedral or scenario uncertainty set are added, the problem 
remains of the same class 
►LP  LP 

►MILP  MILP 

►MIQCQP  MIQCQP 

► A quadratic uncertainty set introduces a second order cone: 
►LP  Second Order Conic Programming (SOCP) 

►MILP  MISOCP 

►MIQCQP  MIQCQP + MISOCP 
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In practice … 

► Suppose we have some historical data, but not enough 



© 2015 Fair Isaac Corporation. Confidential. 37 

In practice … 

► Analytics can be used to yield a pattern (mean/covariance). 

► Exploit it! 
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In practice … 

► Quadratic uncertainty: 𝒖 = 𝒖  + 𝒖  with 𝒖 𝑻𝑸𝒖 ≤ 𝜶 
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In practice … 

► Our level of uncertainty (conservativeness) is given by 𝛼 
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Reference material 

► White paper Robust Optimization with Xpress 
►Explains the underlying concepts and documents the Robust Optimisation 

examples distributed in the Xpress release 

► Ben-Tal, A., El Ghaoui, L., Nemirovski, A. (2009). Robust optimization. 
Princeton University Press. 

► Bertsimas, D., Sim, M. (2004). The price of robustness. Operations 
Research, 52(1), 35-53 
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