
Uploading a Shiny app to a server

1. Creating a sever instance

For this example, we use Google Cloud (https://console.cloud.google.com/freetrial). Amazon

Web Services (https://aws.amazon.com/) or Microsoft Azure (https://azure.microsoft.com/)

are all comparable solutions, all with free credit offers for new accounts. The only advantage of

Google is that it doesn’t require additional software downloads to interact with a Linux server.

Begin by setting up your account on the above URL using any Google account (Google Mail,

YouTube, etc.). Having done this, navigate to “VM Instances” (for Virtual Machine) from the

main navigation (https://console.cloud.google.com/compute/instances). Here you can create a

virtual server to host your code. Having selected create you should see a screen like the below:

https://console.cloud.google.com/freetrial?page=0
https://aws.amazon.com/console/
https://azure.microsoft.com/en-gb/
https://console.cloud.google.com/compute/instances

There are various options and customisations available here, far too many to go into, so just the

key parts are highlighted. Naming the instance is useful if you are maintaining several VMs. You

can also change the machine specifics in terms of CPUs (computing power – although it is worth

noting that “out-of-the-box” R, and therefore Shiny, is a single-core application), RAM (amount

of data that can be held in memory) and storage space. In most cases the standard settings are

fine and it is possible to upgrade later. You should also select your “flavour” of Linux. My

preference is CentOS 7, which is what the below instructions will be based on (although Ubuntu

can also be used). Further down is a link labelled “Management, disks, networking, SSH keys”.

We’ll need to check to allow HTTP traffic (so users can visit the app) and expand the options.

We’ll be adding an SSH key (basically a code-based password) so that we can securely log into

the instance for transferring files and similar tasks. You can either use a pre-existing SSH, or one

can be generated (for Windows: https://www.ssh.com/ssh/putty/windows/puttygen; and for

Mac: https://docs.joyent.com/public-cloud/getting-started/ssh-keys/generating-an-ssh-key-

manually/manually-generating-your-ssh-key-in-mac-os-x). Having created the key you need to

paste it directly into the Google Console in the space below:

https://www.ssh.com/ssh/putty/windows/puttygen
https://docs.joyent.com/public-cloud/getting-started/ssh-keys/generating-an-ssh-key-manually/manually-generating-your-ssh-key-in-mac-os-x
https://docs.joyent.com/public-cloud/getting-started/ssh-keys/generating-an-ssh-key-manually/manually-generating-your-ssh-key-in-mac-os-x

Having completed this step click on “Create” and your virtual machine will be built. This may

take a short amount of time, but when finished you will see a green tick next to your instance

name:

One of the main advantages of Google is that we can now connect directly to the instance by

selecting “Open in browser window” under the dropdown menu by “SSH”. This should open

up a pop-up window with the interface to our machine:

From here we can start to configure our machine and install the necessary programs. To begin

with we will make sure everything is up to date using the following commands:

sudo yum install epel-release

sudo yum update

All being well you will be shown a total download size (in my practice run its 90mb) and

prompted if this is OK. “y” (for yes) will then download any additional packages. Once finished

you will see a message saying “Complete!” and the command prompt will be back:

Next step is installing R and Shiny, with the following commands:

sudo yum install libcurl-devel

sudo yum install openssl-devel

sudo yum install wget

sudo yum install R

sudo su - -c "R -e \"install.packages(c('curl', 'shiny',

'rmarkdown', 'devtools', 'RJDBC', 'shinydashboard', 'plotly', 'DT',

'dplyr', 'e1071', 'rpart'), repos='http://cran.rstudio.com/')\""

Again, you’ll be prompted to agree to the downloads with a “y” for yes and there may be a small

delay. We’ll test everything worked by opening up R (just type in “R” into the prompt), and

trying to bring a library in memory using the following command:

library(devtools)

All being well you will see no error message after the command, which shows everything is

working as it should be (afterwards you can exit R using the command “q()” – q for quit – and

select “n” to say you don’t want to save your workspace):

At this point we’re ready to install Shiny Server. Note: the below code will change from time to

time with new releases, so its worth checking the website

(https://www.rstudio.com/products/shiny/download-server/) for the latest URLs:

wget https://download3.rstudio.org/centos6.3/x86_64/shiny-server-

1.5.7.907-rh6-x86_64.rpm

sudo yum install --nogpgcheck shiny-server-1.5.7.907-rh6-x86_64.rpm

https://www.rstudio.com/products/shiny/download-server/

Finally, we want to start Shiny Server and enable it to run whenever the server starts (i.e. make it

run permanently). We can do this using systemctl and the following commands:

sudo systemctl start shiny-server

sudo systemctl enable shiny-server

At this point everything should be installed and working! We just need to enable access for users

to see the app. To do this return to the Google Console and create a “firewall rule”, i.e. enable

access to port 3838 where Shiny Server serves content. Navigate to “VPC network” from the

main menu and then “Firewall rules”.

We want to “CREATE FIREWALL RULE” from the top menu. Fill in the form including a

name for the rule. At the “Targets” option we need to tell Google which VMs we want this to

apply to, either by picking specific instances or just “All instances in the network” (if you only

use the account to run Shiny apps). We also need to specify who the rule applies to. In

“Destination filter” select “IP ranges”. Here we can either grant access only to specific IP

addresses or address ranges (e.g. make the app only available to someone in a client’s office), or

we can allow access to anyone. Assuming the latter the “Destination IP ranges” box will be filled

with “0.0.0.0/0”. Finally we want to tell Google which port this applies to. In “Protocols and

ports” select “Specified protocols and ports” and then type in “tcp:3838” (this means we provide

normal http access to port 3838 where Shiny runs).

To test this, go back to the Google Console and click on the external IP (35.190.138.50 in this

case).

This will throw a “page cannot be found error” as it will assume port 80, which has no content

on. However, if you add to the end of the URL “:3838” then you should get access and see the

page below (so the full URL is now http://35.190.138.50:3838 - replacing 35.190.138.50 with the

IP assigned to your machine).

http://35.190.138.50:3838/

2. Uploading your app to the server

Now that everything is running, we want to be able to move our app online rather than the test.

Fortunately, this quite easy to do using an FTP client, in this case we use FileZilla

(https://filezilla-project.org). From this URL, download the latest version of the software from

this link:

FileZilla allows us to easily, drag ‘n drop files from our local machine to the VM. Firstly,

however, we need to give permission to write to the relevant folder on the VM. In the browser

access to the machine we run the following command (warning: we need to reverse this later on

for security reasons!):

sudo chmod 777 -R /srv/shiny-server

We can now start transferring. In FileZilla select “File > Site Manager” which will produce the

below interface.The “Host” is the IP address of the instance (without the port information

“:3838”) and “Protocol” should be set as SFTP. The “Logon Type” is “Key file” (as we will use

the key we generated earlier).

https://filezilla-project.org/

For user, we need to refer back to the instance, and click through to instance details (by clicking

on instance name). Scrolling down we can find the name of the SSH key we set up earlier:

Finally, we can select the local version of the SSH key created earlier as “Key File”.

Now we should be connected to the server so that the left hand side of our interface is the local

machine we are working on, and the right hand side is the VM instance:

On the left we want to navigate to the folder where our app sits (in this case it is in a folder

called “Main”). On the right, we navigate to the top level (by clicking on the symbol), and

then into /srv/shiny-server. Here we can simply drag the folder (“Main”) from the left over to

the right and the files will transfer. Now we should be ready to server our app! We need to

change the permission back to secure, and then reboot Shiny Server:

sudo chmod 755 -R /srv/shiny-server

sudo systemctl restart shiny-server

Now we can navigate to our app by simply adding the folder name to the end of our URL (e.g.

http://35.190.138.50:3838/Main/):

http://35.190.138.50:3838/Main/

