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We exploit data, analytics and 
design to help our clients be 
the best they can be

We were born and proven in 
Formula One, where the smallest 
margins are the difference 
between winning and losing and 
data has emerged as a 
fundamental element of 
competitive advantage
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WHO WE ARE
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About me

Philip Pilgerstorfer
Data Scientist at QuantumBlack, a McKinsey Company
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Explainability of complex machine learning models is crucial to their 
uptake by a wider audience

Build user 
trust

Satisfy legal 
requirements

Provide 
ethics-related  
justification

Derive 
(actionable) 

robust insights

SOURCE: Team analysis
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What makes a good explainability method? GLIM!

SOURCE: Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier, https://arxiv.org/abs/1602.04938

Global-Perspective
• Local Explanations give us a Global Perspective of the model

Local Fidelity
• Explanations must be locally faithful

Interpretable
• Explanations should be easy to understand
• Explanations should only highlight a few important variables

Model-Agnostic
• Explainability method does not depend on underlying method used

https://arxiv.org/abs/1602.04938


9All content copyright © 2019 QuantumBlack, a McKinsey company 

Post-hoc XAI enables the user to achieve explainability without 
changing their base model

SOURCE: https://github.com/slundberg/shap

XAI 'sits on top’ of the model and the data 

https://github.com/slundberg/shap


Contents
01 About us

o2 Intro to eXplainable AI (XAI)

03 Methods for XAI

04 XAI in practice

o5 Questions

All content copyright © 2019 QuantumBlack, a McKinsey company 



11All content copyright © 2019 QuantumBlack, a McKinsey company 

XAI methods have been booming over the past couple of years

1 Ribeiro et al. (2016), ”`Why Should I Trust You?’: Explaining the Predictions of Any Classifier”, https://arxiv.org/abs/1602.04938
2 Lundberg and Lee (2017) “A unified approach to interpreting model predictions“, https://arxiv.org/abs/1705.07874
3 Derived from SHAP for deep learning
All images taken from respective publications/github repositories

Deep SHAP3

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

LIME 
(Locally Interpretable Model-agnostic 
Explanations)1

SHAP 
(SHapley Additive exPlanations)2

Model/variants Models they apply to Computational cost
Lime Model-agnostic High http://github.com/marcotcr/lime

Kernel SHAP Model-agnostic Very high http://github.com/slundberg/shap

Package availability

Tree SHAP Tree methods Medium Ibidem

Deep SHAP MediumNeural networks Ibidem

https://arxiv.org/abs/1602.04938
https://arxiv.org/abs/1705.07874
http://github.com/marcotcr/lime
http://github.com/slundberg/shap
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LIME: Locally Interpretable Model-agnostic Explanation

SOURCE: 1 Ribeiro et al., "Why Should I Trust You?": Explaining the Predictions of Any Classifier, https://arxiv.org/abs/1602.04938

Figure 3: Toy example to present intuition for LIME.

The black-box model’s complex decision function f
(unknown to LIME) is represented by the blue/pink

background, which cannot be approximated well by

a linear model. The bold red cross is the instance

being explained. LIME samples instances, gets pre-

dictions using f , and weighs them by the proximity

to the instance being explained (represented here

by size). The dashed line is the learned explanation

that is locally (but not globally) faithful.

distance function D (e.g. cosine distance for text, L2 distance
for images) with width �.

L(f, g,⇡x) =
X

z,z02Z

⇡x(z)
�
f(z)� g(z0)

�2
(2)

For text classification, we ensure that the explanation is
interpretable by letting the interpretable representation be
a bag of words, and by setting a limit K on the number of
words, i.e. ⌦(g) = 11[kwgk0 > K]. Potentially, K can be
adapted to be as big as the user can handle, or we could
have di↵erent values of K for di↵erent instances. In this
paper we use a constant value for K, leaving the exploration
of di↵erent values to future work. We use the same ⌦ for
image classification, using “super-pixels” (computed using
any standard algorithm) instead of words, such that the
interpretable representation of an image is a binary vector
where 1 indicates the original super-pixel and 0 indicates a
grayed out super-pixel. This particular choice of ⌦ makes
directly solving Eq. (1) intractable, but we approximate it by
first selecting K features with Lasso (using the regularization
path [9]) and then learning the weights via least squares (a
procedure we call K-LASSO in Algorithm 1). Since Algo-
rithm 1 produces an explanation for an individual prediction,
its complexity does not depend on the size of the dataset,
but instead on time to compute f(x) and on the number
of samples N . In practice, explaining random forests with
1000 trees using scikit-learn (http://scikit-learn.org) on a
laptop with N = 5000 takes under 3 seconds without any
optimizations such as using gpus or parallelization. Explain-
ing each prediction of the Inception network [25] for image
classification takes around 10 minutes.
Any choice of interpretable representations and G will

have some inherent drawbacks. First, while the underlying
model can be treated as a black-box, certain interpretable
representations will not be powerful enough to explain certain
behaviors. For example, a model that predicts sepia-toned
images to be retro cannot be explained by presence of absence
of super pixels. Second, our choice of G (sparse linear models)
means that if the underlying model is highly non-linear even
in the locality of the prediction, there may not be a faithful
explanation. However, we can estimate the faithfulness of

Algorithm 1 Sparse Linear Explanations using LIME

Require: Classifier f , Number of samples N
Require: Instance x, and its interpretable version x0

Require: Similarity kernel ⇡x, Length of explanation K
Z  {}
for i 2 {1, 2, 3, ..., N} do

z0i  sample around(x0)
Z  Z [ hz0i, f(zi),⇡x(zi)i

end for

w  K-Lasso(Z,K) . with z0i as features, f(z) as target
return w

the explanation on Z, and present this information to the
user. This estimate of faithfulness can also be used for
selecting an appropriate family of explanations from a set of
multiple interpretable model classes, thus adapting to the
given dataset and the classifier. We leave such exploration
for future work, as linear explanations work quite well for
multiple black-box models in our experiments.

3.5 Example 1: Text classification with SVMs
In Figure 2 (right side), we explain the predictions of a
support vector machine with RBF kernel trained on uni-
grams to di↵erentiate “Christianity” from “Atheism” (on a
subset of the 20 newsgroup dataset). Although this classifier
achieves 94% held-out accuracy, and one would be tempted
to trust it based on this, the explanation for an instance
shows that predictions are made for quite arbitrary reasons
(words “Posting”, “Host”, and “Re” have no connection to
either Christianity or Atheism). The word “Posting” appears
in 22% of examples in the training set, 99% of them in the
class “Atheism”. Even if headers are removed, proper names
of prolific posters in the original newsgroups are selected by
the classifier, which would also not generalize.
After getting such insights from explanations, it is clear

that this dataset has serious issues (which are not evident
just by studying the raw data or predictions), and that this
classifier, or held-out evaluation, cannot be trusted. It is also
clear what the problems are, and the steps that can be taken
to fix these issues and train a more trustworthy classifier.

3.6 Example 2: Deep networks for images
When using sparse linear explanations for image classifiers,
one may wish to just highlight the super-pixels with posi-
tive weight towards a specific class, as they give intuition
as to why the model would think that class may be present.
We explain the prediction of Google’s pre-trained Inception
neural network [25] in this fashion on an arbitrary image
(Figure 4a). Figures 4b, 4c, 4d show the superpixels expla-
nations for the top 3 predicted classes (with the rest of the
image grayed out), having set K = 10. What the neural
network picks up on for each of the classes is quite natural
to humans - Figure 4b in particular provides insight as to
why acoustic guitar was predicted to be electric: due to the
fretboard. This kind of explanation enhances trust in the
classifier (even if the top predicted class is wrong), as it shows
that it is not acting in an unreasonable manner.

𝑓: model to explain

𝑔:	explanatory models

𝑑 𝑥, 𝑧 :	distance measure 
between inputs 𝑥 and 𝑧

We find 𝜉(𝑥) without making any assumptions of 
𝑓 as follows:

1. Sample 𝑥′ by	perturbing	𝑥,	weighted	by	𝑑 𝑥, 𝑥:

2. Get labels with y: = f x′

3. Use linear classification on perturbed dataset

𝜉(𝑥) = argmin
@∈B

ℒ(𝑓, 𝑔, 𝑑 𝑥,⋅ ) + Ω(𝑔)

Goodness of fit of 
explanatory model

Penalize complexity
“Simple explanation”

https://arxiv.org/abs/1602.04938
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SHAP: SHapley Additive Explanations1

3 properties
Local accuracy: require the output of the local 
explanation model 𝑔 G𝑥 to match the original model 
𝑓 𝑥 , where G𝑥 is the simplified input, i.e.:

𝑓 𝑥 = 𝑔 G𝑥 ,

Missingness: require features missing in the original 
input to have no attributed impact, i.e.

G𝑥H = 0 ⟹ 𝜑H = 0

Consistency: stipulates 𝜑H 𝑓:, 𝑥 ≥ 𝜑H(𝑓, 𝑥) for any two 
models 𝑓 and 𝑓: if the feature’s contribution in 𝑓: ≥ the 
feature’s contribution in 𝑓.

SHAP satisfies them
Explanation model:

Class of additive feature attribution models,

𝑔 G𝑥 = 𝜑M + ∑HOPQ 𝜑H G𝑥H

Shapley values2:
𝜑H ∈ ℝ — unified measure of additive feature attributions

𝜑H = S
T⊆V\{H}

𝑆 ! 𝑀 − 𝑆 − 1 !
𝑀!

[𝑓T∪ H (𝑥T∪ H ) − 𝑓T 𝑥T ]

Intuition: “The contribution of 𝒙𝒊 if it joins a random 
subset 𝒙𝑺”

SOURCE: 
1. Lundberg and Lee (2017) “A unified approach to interpreting model predictions“, https://arxiv.org/abs/1705.07874
2. Lloyd S Shapley (1953) “A value for n-person games”, In: Contributions to the Theory of Games, 2:28, pp.307-317

https://arxiv.org/abs/1705.07874
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Illustrative example using the UCI Adult data set
Classifying likelihood of high income in US population

SOURCE: Data: Dua, D. and Karra Taniskidou, E. (2017). UCI Machine Learning Repository: Irvine, CA: University of California, School of Information and Computer Science.
Image:  https://www.census.gov/library/visualizations/2016/comm/cb16-158_median_hh_income_map.html

The Adult data set is available from the UCI ML Repository
• Objective is classification into high salary (>50k) or low 

salary (<50k).
• Data contains personal information like age, education, 

work class, occupation, marital status, ethnicity
• Train set contains 32,560 observations; test set 16,281.

The data reflects the historical imbalance and bias in 
salaries with regard to gender but also race and ethnicity.

https://www.census.gov/library/visualizations/2016/comm/cb16-158_median_hh_income_map.html
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Individualised explanations using LIME

SOURCE: Team analysis

Contributions to high income prediction:
• Married
• 37 < age <= 48
• Working 50 hours

Contributions to low income prediction:
• No capital losses recorded

High IncomeLow Income

Low Income
High Income

Example person
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SHAP enables you to visualise individualised explanations…

Typical example 
Legend for categorical values:
Sex: 0  = F, 1 = M | Marital status: 2 = married, 3 = married, spouse absent
Occupation: 0 = Adm-clerical,  5 = Sales

Low probability of >$50k earnings

High probability of >$50k earnings

output & base value

SOURCE: Team analysis
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... and individualised explanations across the cohort
N

et
 S

ha
pl

ey
 v

al
ue

Young adults: non-married, fewer 
years in education

SOURCE: Team analysis

People with non-zero 
capital gain regardless 

of other factors

Married adults working 
long hours, regardless 
of years in education

Older married adults 
with many years of 

education
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Use case: Risk scores for drivers

SOURCE: Team visualisation

Journey A Journey B
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Our solution uses a Random Forest plus LIME/Shap for interpretability

SOURCE: Team analysis

Feature engineering

~1500 features ~100 features

Creation of single and 
multi-dimensional 
features based on 
hypotheses tree

Feature Selection
Use of elastic net 
regularization select 
subset of features and 
prevent overfitting to the 
training set

Random Forest
A random forest can 
discover complex 
non-linear 
relationships between 
features LIME/Shap

Personalized 
interpretations of 
the RF results
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How could this look like?

SOURCE: Team analysis

Prediction

Interpretation

Supporting
Information
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Questions?

SOURCE: icons from https://icons8.com/

Philip Pilgerstorfer
philip.pilgerstorfer@quantumblack.com

https://icons8.com/
mailto:philip.pilgerstorfer@quantumblack.com
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